国产老熟女高潮毛片A片仙踪林,www.日韩欧美,H肉动漫无码AV在线亚洲一区,亚洲精品成a人在线观看
聯(lián)系我們

第五屆“維生素D爭議”國際會(huì)議

——老年人群中的維生素D:共識(shí)聲明

Vitamin D in the older population: a consensus statement

Giustina A, Bouillon R, Dawson-Hughes B, etal.
Endocrine. 2023 Jan;79(1):31-44.

介紹

第五屆“維生素D爭議”國際會(huì)議于2021年9月15日至18日在意大利Stresa舉行,這是2017年開始的系列會(huì)議之一。國際專家和領(lǐng)導(dǎo)人參加了本次會(huì)議,旨在回顧和討論有關(guān)維生素D的爭議性話題。四場會(huì)議討論了維生素D的不同主要方面:衰老、胃腸道系統(tǒng)、指南和COVID-19。會(huì)前參與者回顧了他們指定主題的現(xiàn)有文獻(xiàn),并在會(huì)議期間進(jìn)行了充分的討論以達(dá)成共識(shí)。本文總結(jié)了專家們對衰老與維生素D的討論。這部分回顧的文章類型沒有限制,優(yōu)先考慮隨機(jī)臨床試驗(yàn);沒有這些資料時(shí),會(huì)考慮觀察、實(shí)驗(yàn)或意見研究。此外,研究中“老年人口”的年齡界限從>65歲到>75歲各不相同,其中以>65歲為界限的居多。

年齡對維生素D的影響

維生素D的產(chǎn)生和代謝都會(huì)隨著衰老而變化,原因包括:皮膚產(chǎn)生維生素D的能力降低和陽光照射減少、刺激胃腸道鈣吸收的維生素D相對抵抗以及腎功能下降(衰老的腎臟通過25-羥基維生素D(25[OH]D)產(chǎn)生1,25-二羥基維生素D的能力也較差)。此外,吸煙、較高的身體脂肪百分比也可能會(huì)導(dǎo)致血清25(OH)D濃度降低。

1)皮膚產(chǎn)生維生素D的能力降低

皮膚樣本顯示,從20歲到80歲,7-脫氫膽固醇的濃度下降了50%以上,老化皮膚產(chǎn)生的維生素D大約比年輕皮膚少40%。Chalcraft及其同事通過十年為自變量和對數(shù)D3產(chǎn)量的簡單線性回歸模型算出:與年齡相關(guān)的維生素D3產(chǎn)量每十年減少13%,表明70歲時(shí)的維生素D3產(chǎn)量僅為20歲時(shí)的一半(圖1)。當(dāng)然,皮膚中維生素D生成的潛力取決于一系列因素,季節(jié)、一天中的時(shí)間、緯度、海拔、云量、空氣污染、皮膚類型、衣服、防曬霜和生活方式等都會(huì)影響太陽UV-B能量刺激皮膚合成維生素D的能力。

維生素D3生產(chǎn)年齡連續(xù)模型

圖1. 維生素D3生產(chǎn)年齡連續(xù)模型

2)陽光照射減少

在皮膚中,波長為290-315nm的太陽紫外線(UV-B)會(huì)將7-脫氫膽固醇轉(zhuǎn)化為前維生素D3。單次15分鐘的陽光照射(>40%身體面積)會(huì)導(dǎo)致皮膚產(chǎn)生大量維生素D。雖然衰老可能會(huì)減少皮膚合成,陽光照射仍然是維生素D3的重要來源。隨著年齡的增長,維生素D的產(chǎn)生量會(huì)減少,但皮膚的生產(chǎn)儲(chǔ)備能力是充足的。因此,大多數(shù)老年人可能可以從陽光中產(chǎn)生足夠的維生素D,但居家人士仍然需要補(bǔ)充維生素D才能滿足維生素D需求。

經(jīng)證實(shí),每周三次,在背部1000cm2的表面上以最小紅斑劑量的一半進(jìn)行人工紫外線照射,可在3個(gè)月內(nèi)使平均血清25(OH)D從25nmol/L增加到60nmol/L,與每日口服維生素D3 400IU的效果相似。這一觀察結(jié)果表明,在這些條件下,每天1000cm2的皮膚暴露可能導(dǎo)致血清25(OH)D的增加,相當(dāng)于每天補(bǔ)充約800IU的維生素D(>70歲人群的每日推薦量)。在另一項(xiàng)研究中,8名缺乏維生素D的老年精神科患者每周接受一次半身紫外線照射,照射劑量為最小紅斑劑量的一半(2分鐘),持續(xù)8周。中位血清25(OH)D從基線時(shí)的26.5nmol/L(范圍12-58)增加至43.5nmol/L(范圍36-71)。皮膚表面積超過15000cm2,理論上皮膚中可能產(chǎn)生的維生素D量可能很高,即使是老年患者,紫外線照射也能有效觸發(fā)皮膚維生素D的合成。

維生素D缺乏對老年人的影響

1.骨骼

嚴(yán)重的維生素D缺乏會(huì)對骨骼產(chǎn)生不利影響,包括骨軟化、高骨轉(zhuǎn)換和骨質(zhì)流失,以及老年人髖部骨折的風(fēng)險(xiǎn)增加(圖2)。維生素D是一種閾值營養(yǎng)素,在嚴(yán)重缺乏維生素D的個(gè)體中,維生素D可以降低老年人骨折風(fēng)險(xiǎn);輕度維生素D缺乏會(huì)導(dǎo)致骨質(zhì)疏松癥的發(fā)生,但單獨(dú)補(bǔ)充維生素D似乎并不能減少骨折。Chapuy等人研究發(fā)現(xiàn),法國老年非臥床療養(yǎng)院和公寓婦女在18個(gè)月內(nèi),每日補(bǔ)充維生素D(800IU)和鈣(1200mg),髖部和其他非椎骨骨折分別減少43%和32%。在該人群中,平均基線血清25(OH)D濃度僅為36nmol/L。然而,測試采用的是老式競爭性蛋白質(zhì)結(jié)合法,測值比高效液相色譜法高80%。高效液相色譜交叉校準(zhǔn)濃度平均值約為20nmol/L,表明大多數(shù)參與者患有中度或重度維生素D缺乏癥。

嚴(yán)重缺乏維生素D的個(gè)體甲狀旁腺激素(PTH)水平會(huì)升高,這種繼發(fā)性甲狀旁腺功能亢進(jìn)癥可能導(dǎo)致骨質(zhì)流失和骨折風(fēng)險(xiǎn)的病理生理學(xué)變化。兩項(xiàng)較早的研究提供了可參考的25(OH)D閾值,低于該閾值PTH水平可能會(huì)上升。在MORE試驗(yàn)中,與血清25(OH)D>50nmol/L(3.5±1.5pmol/L)的女性相比,兩組不同程度維生素D缺乏的女性血清PTH較高(血清25(OH)D<25nmol/L和25(OH)D 25-50nmol/L;PTH分別為4.8±2.2和4.1±1.8pmol/L)。血清25(OH)D>50nmol/L組血清PTH無明顯下降,維生素D處理后兩組血清PTH均顯著降低。一項(xiàng)基于LASA內(nèi)收集數(shù)據(jù)的研究發(fā)現(xiàn)25(OH)D的閾值范圍為40-60nmol/L。在另一項(xiàng)針對絕經(jīng)后骨質(zhì)疏松婦女的研究中,PTH繼發(fā)性升高的閾值也出現(xiàn)在血清25(OH)D 50nmol/L濃度時(shí)。關(guān)于25(OH)D的精確水平仍然存在一些爭議,如果能夠清楚地確定這樣一個(gè)閾值,人們就可以通過維生素D缺乏引起的繼發(fā)性甲狀旁腺功能亢進(jìn)的程度來定義維生素D缺乏的程度。然而,這個(gè)閾值也可能取決于其他因素,如鈣攝入量和體力活動(dòng)。

老年人維生素D缺乏對骨骼的影響以及維生素D在預(yù)防中的作用

圖2. 老年人維生素D缺乏對骨骼的影響以及維生素D在預(yù)防中的作用

2.骨密度

新西蘭維生素D評估(ViDA)研究的一項(xiàng)針對老年社區(qū)居住男性和女性的研究表明,連續(xù)2年每月服用100000IU維生素D,平均基線血清25(OH)D水平為55nmol/L的人群股骨頸和髖部骨質(zhì)流失無改善。基線血清25(OH)D<30nmol/L的人群,脊柱、股骨頸和全髖骨丟失有所改善,并且在脊柱和股骨頸處具有統(tǒng)計(jì)學(xué)顯著性。相比之下,基線血清25(OH)D>30nmol/L的患者僅全髖部骨質(zhì)流失,減少幅度較小。在ViDA研究的整個(gè)隊(duì)列中,平均基線血清25(OH)D濃度為66nmol/L且鈣攝入量充足,補(bǔ)充維生素D3超過3.3年并沒有降低骨折的發(fā)生率。

在第二項(xiàng)研究,即Aberdeen研究中,在冬末招募了305名絕經(jīng)后婦女,并隨機(jī)讓她們接受維生素D 400IU/天、1000IU/天或安慰劑,為期一年。事后分析顯示,維生素D 1000IU/天對基線25(OH)D≤30nmol/L的患者的脊柱和髖部BMD具有顯著改善作用,但對基線25(OH)D高于這一水平的患者沒有顯著影響。血清25(OH)D水平<30nmol/L的老年人最有可能出現(xiàn)骨骼負(fù)面影響,而補(bǔ)充維生素D有明顯的改善作用。

3.跌倒

Meta分析的結(jié)果相互矛盾,但適度劑量的維生素D(每天700-1000IU)似乎可以降低缺乏維生素D的老年人跌倒的風(fēng)險(xiǎn)。相反,不頻繁的較大劑量補(bǔ)充可能會(huì)增加跌倒風(fēng)險(xiǎn)。在基線25(OH)D水平<50nmol/L的絕經(jīng)后婦女中進(jìn)行的一項(xiàng)隨機(jī)前瞻性、安慰劑對照的多劑量維生素D試驗(yàn)發(fā)現(xiàn),低劑量維生素D治療可降低跌倒的風(fēng)險(xiǎn),而每天4000和4800IU的劑量可增加跌倒的風(fēng)險(xiǎn)。因此,每日應(yīng)低至中劑量的維生素D補(bǔ)充,避免每日或間歇性高劑量補(bǔ)充。

4.骨骼外效應(yīng)

維生素D被代謝成大約50種代謝物,它的活性形式1,25(OH)2D為維生素D受體(VDR)的配體。VDR在大多數(shù)組織中表達(dá),它的普遍存在是維生素D具有許多骨骼外作用這一假設(shè)的基礎(chǔ),這一主題在小組之前會(huì)議上最近發(fā)表的幾篇文章中進(jìn)行了回顧(圖3)。

老年人缺乏維生素D對骨骼的額外影響以及維生素D的預(yù)防作用

圖3. 老年人缺乏維生素D對骨骼的額外影響以及維生素D的預(yù)防作用

注:實(shí)線表示已知的效果,虛線表示可能的影響。

5.骨骼肌

一般認(rèn)為維生素D缺乏影響兩種不同的肌肉骨骼途徑,一種涉及神經(jīng)肌肉組織的影響,導(dǎo)致跌倒和骨折;另一種通過鈣吸收減少,導(dǎo)致甲狀旁腺激素(PTH)水平升高,骨吸收增加,骨質(zhì)流失導(dǎo)致骨折風(fēng)險(xiǎn)增加。維生素D和鈣缺乏時(shí),可能導(dǎo)致循環(huán)甲狀旁腺激素水平的增加,對肌肉造成直接的不良影響。臨床前和臨床證據(jù)表明甲狀旁腺激素對肌肉有直接影響,完整的牛PTH和合成的PTH1-34片段增加了大鼠骨骼肌的肌肉降解和新合成的丙氨酸和谷氨酰胺的釋放。

臨床上,晚期原發(fā)性甲狀旁腺功能亢進(jìn)患者有神經(jīng)肌肉體征和癥狀以及肌肉無力,甲狀旁腺手術(shù)成功后肌肉無力很快逆轉(zhuǎn)。兩組老年婦女具有相似的臨床特征,25(OH)D水平低,但PTH水平不同(高于或在范圍內(nèi)),在幾項(xiàng)肌肉力量和功能測試中表現(xiàn)不同。PTH水平較高的組膝關(guān)節(jié)屈曲強(qiáng)度較低,最大肌力產(chǎn)生較低,姿勢穩(wěn)定性降低。一項(xiàng)小型觀察性研究,調(diào)查了83名平均年齡為84歲的養(yǎng)老院居民{25(OH)D平均水平為27nmol/L、PTH中位水平為5.2pmol/L(參考范圍1-6.5pmol/L)},評估了甲狀旁腺激素在跌倒中的作用。在此期間,33名參與者至少跌倒一次。那些跌倒的人有較低的25(OH)D水平和較高的甲狀旁腺激素水平,而兩組的1,25(OH)2D水平?jīng)]有顯著差異。Logistic回歸分析表明甲狀旁腺激素水平是跌倒的獨(dú)立決定因素。Sambrook等人對637名普遍缺乏維生素D的老年人進(jìn)行了一項(xiàng)大型觀察性研究,這些老年人平均年齡為86歲,居住在澳大利亞的中等全面護(hù)理機(jī)構(gòu)。跌倒者和非跌倒者血清25(OH)D水平分別為28.8和33.2nmol/L,PTH水平分別為64.8和57.0pg/ml。邏輯回歸顯示甲狀旁腺激素是跌倒的獨(dú)立預(yù)測因子。每天低劑量的維生素D可能會(huì)降低缺乏維生素D的老年人跌倒的風(fēng)險(xiǎn),進(jìn)一步檢查跌倒的獨(dú)立預(yù)測因子——甲狀旁腺激素也是必要的。

6.心血管疾病

臨床前數(shù)據(jù)表明缺乏維生素D與心血管風(fēng)險(xiǎn)有關(guān)。實(shí)驗(yàn)表明,缺乏VDR可引起高腎素高血壓、心肌肥大和纖維化、血栓形成增強(qiáng)。兩項(xiàng)大型隨機(jī)對照試驗(yàn)(VIDA和VITAL)清楚地表明,補(bǔ)充維生素D不會(huì)減少心血管疾病,VIDA試驗(yàn)顯示補(bǔ)充維生素D對中心血壓有輕微的改善作用。

孟德爾隨機(jī)化(MR)研究沒有發(fā)現(xiàn)遺傳性低血清25(OH)D濃度與CV疾病之間的聯(lián)系,但這些研究中的綜合多態(tài)性不允許任何大于5%的血清25(OH)D變異的預(yù)測值。最近一項(xiàng)大型磁共振研究的總體結(jié)果證實(shí)了這一結(jié)論,但通過結(jié)合磁共振和血清25(OH)D水平來看,嚴(yán)重缺乏維生素D組血清25(OH)D的遺傳水平較低(<10 ng/mL)會(huì)增加CV疾病和死亡率。維生素D狀態(tài)不是心血管疾病負(fù)擔(dān)的主要因素,但終身嚴(yán)重缺乏維生素D可能起心血管疾病。

7.癌癥

許多受維生素D內(nèi)分泌系統(tǒng)調(diào)控的基因參與調(diào)控細(xì)胞周期和細(xì)胞分化。動(dòng)物和臨床前數(shù)據(jù)表明,維生素D作用的完全缺乏易導(dǎo)致癌癥,且在早期補(bǔ)充維生素D可預(yù)防癌變。維生素D缺乏與許多癌癥有關(guān),尤其是結(jié)腸癌、乳腺癌和前列腺癌。兩個(gè)主要的大型隨機(jī)對照試驗(yàn)(VITAL和VIDA)沒有發(fā)現(xiàn)長期補(bǔ)充維生素D對癌癥發(fā)病率的影響。然而,根據(jù)VITAL、四項(xiàng)類似的Meta分析研究及D-health研究,發(fā)現(xiàn)每天補(bǔ)充2000IU維生素D的患者,癌癥死亡率顯著降低;每月高劑量(60000IU)維生素D補(bǔ)充的患者癌癥的死亡風(fēng)險(xiǎn)增加。

8.糖尿病

許多臨床前和觀察性研究表明,維生素D水平低與2型糖尿?。═2D)之間存在聯(lián)系。兩項(xiàng)專門用于預(yù)防糖尿病的試驗(yàn)表明,與安慰劑相比,補(bǔ)充維生素D可使未選擇維生素D缺乏癥的糖尿病前期患者患糖尿病的風(fēng)險(xiǎn)降低10-13%。這與最近的兩項(xiàng)Meta分析結(jié)論一致,即補(bǔ)充維生素D可使T2D進(jìn)展的風(fēng)險(xiǎn)降低約10%,特別是在使用劑量超過1000IU/天且非肥胖受試者中。然而,在維生素D與2型糖尿病研究(D2d)的大型隨機(jī)對照試驗(yàn)中,補(bǔ)充維生素D僅顯示出減緩糖尿病前期向T2D進(jìn)展的非顯著趨勢(0.88CI為0.75-1.04;P=0.12)。

維生素D和鈣

維生素D的膳食來源很少。大多數(shù)采用西方飲食的體弱老年人每天的維生素D攝入量較低(即約150IU),他們的陽光照射和皮膚維生素D合成能力受到限制,含鈣食物也可能攝入不足。隨機(jī)對照試驗(yàn)(RCT)的Meta分析表明,維生素D與鈣結(jié)合使用且依從率>80%時(shí),可使髖部骨折和其他非椎骨骨折的發(fā)生率分別降低16%和14%。與60-70歲的人相比,70-80歲以上的人對骨折的影響更大。Yao及其同事最近進(jìn)行的一項(xiàng)Meta分析得出了類似的結(jié)論,維生素D可使任何骨折的風(fēng)險(xiǎn)降低6%,髖部骨折的風(fēng)險(xiǎn)降低16%,但前提是同時(shí)服用鈣補(bǔ)充劑。因此,大多數(shù)老年人應(yīng)該補(bǔ)充維生素D和鈣。

預(yù)防維生素D缺乏的策略

當(dāng)前各國面臨的一個(gè)共問題是如何實(shí)施公共衛(wèi)生政策來預(yù)防老年人維生素D缺乏。除了充足的飲食之外,關(guān)鍵是陽光照射、食物強(qiáng)化及補(bǔ)充劑(圖4)。

老年人避免維生素D缺乏的策略及相關(guān)限制

圖4. 老年人避免維生素D缺乏的策略及相關(guān)限制

1.陽光照射

增加紫外線照射來提高維生素D水平是有爭議的。世界衛(wèi)生組織認(rèn)為,紫外線照射造成的健康威脅可能超過維生素D缺乏造成的健康風(fēng)險(xiǎn)。非黑色素瘤皮膚癌占全球所有癌癥的三分之一,主要存在于老年人群中,紫外線照射是其主要原因。盡管這一策略存在爭議,但應(yīng)該清楚地認(rèn)識(shí)到,血清25(OH)D水平在世界范圍內(nèi)存在季節(jié)性變化,夏季后增加。陽光充足的國家維生素D含量較高,佝僂病和骨軟化癥的患病率較低。年齡和陽光照射是影響血清25(OH)D水平的重要因素。戶外活動(dòng)被視為預(yù)防嚴(yán)重維生素D缺乏、改善健康的合理措施,但人們必須了解過度日曬的風(fēng)險(xiǎn),以避免曬傷、防曬霜的使用以及如何及早識(shí)別癌性皮膚病變。

2.食品和食品強(qiáng)化

在過去3年中,發(fā)表了兩項(xiàng)重要聲明,一項(xiàng)來自關(guān)于維生素D的二等獎(jiǎng)基金論壇,一項(xiàng)來自歐洲鈣化組織協(xié)會(huì)。這些強(qiáng)調(diào)了公共衛(wèi)生目標(biāo)是降低佝僂病和骨軟化癥的風(fēng)險(xiǎn),并避免血清25(OH)D水平低于25nmol/L。食物中維生素D的天然來源很少(西方飲食中每天約為150IU)。因此,在食品中添加維生素D是一種有效的策略,適用于大量人群以避免嚴(yán)重缺乏,特別是對于陽光照射有限的國家。加拿大,牛奶中維生素D強(qiáng)化是強(qiáng)制性的,與英國、美國和德國相比,血清水平低于25nmol/l的發(fā)生率較低。

3.補(bǔ)充維生素D

補(bǔ)充維生素D似乎是有效實(shí)現(xiàn)維生素D充足的最簡單方法。大多數(shù)已測試的方案均顯示血清25(OH)D水平呈劑量依賴性增加,但存在顯著個(gè)體差異。結(jié)合強(qiáng)化和補(bǔ)充來解決維生素D缺乏問題,理想情況下可將整個(gè)人群的血清25(OH)D水平提高至50nmol/L。一些使用間歇性高劑量維生素D補(bǔ)充劑的研究表明,跌倒和骨折的風(fēng)險(xiǎn)會(huì)增加,因此優(yōu)選每日或每周補(bǔ)充劑量。

Cashman及其同事根據(jù)7項(xiàng)基于冬季的隨機(jī)對照試驗(yàn)(包括882項(xiàng))的Meta回歸分析,計(jì)算了達(dá)到血液中目標(biāo)血清25(OH)D水平的每日劑量,參與者年齡從4歲到90歲。結(jié)論是避免嚴(yán)重缺乏(即97.5%的個(gè)體達(dá)到25nmol/L)的每日劑量是400IU。每天則需要1000IU才能達(dá)到50nmol/L的安全水平;然而,每天1000IU的劑量比醫(yī)學(xué)研究所(IOM)和其他監(jiān)管機(jī)構(gòu)先前推薦的劑量要高。

總結(jié)

老年人群中應(yīng)避免血清25(OH)D<30nmol/L,以防維生素D缺乏會(huì)對骨骼產(chǎn)生影響,如BMD下降、繼發(fā)性甲狀旁腺功能亢進(jìn)和骨軟化癥。治療目標(biāo)應(yīng)側(cè)重于避免25(OH)D血清水平<30nmol/L,目標(biāo)是達(dá)到>50nmol/L水平,以避免維生素D缺乏帶來的不利影響。為了減少老年人骨折,充足的維生素D和鈣是必要的。

參考文獻(xiàn)

1.Giustina A, Adler RA, Binkley N, etal. Controversies in Vitamin D: summary statement from an international conference.J. Clin. Endocrinol. Metab.2019;104:234–240.
2.Sempos CT, Heijboer AC, Bikle DD,etal. Vitamin D assays and the definition of hypovitaminosis D: Results from the first international conference on controversies in vitamin D.Br. J. Clin. Pharmacol.2018;84:2194–2207.
3.Ebeling PR, Adler RA, Jones G, etal. Management of endocrine disease: Therapeutics of vitamin D.Eur. J. Endocrinol.2018;179:R239–R259.
4.Bouillon R, Marcocci C, Carmeliet G,etal. Skeletal and extraskeletal actions of vitamin D: Current evidence and outstanding questions.Endocr. Rev.2019;40:1109–1151.
5.Giustina A, Adler RA, Binkley N,etal. Consensus statement from 2nd International Conference on Controversies in Vitamin D.Rev. Endocr. Metab. Disord.2020;21:89–116.
6.Giustina A, Bouillon R, Binkley N, etal. Controversies in Vitamin D: a statement from the third international conference.JBMR.2020;4:e10417.
7.Bilezikian JP, Formenti AM, Adler RA, etal. Vitamin D: dosing, levels, form, and route of administration: does one approach fit all.Rev. Endocr. Metab. Disord.2021;22:1201–1218.
8.MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3.J. Clin. Invest.1985;76:1536–1538.
9.Holick MF, Chen TC, Lu Z, etal. Vitamin D and skin physiology: a D-lightful story.J. Bone Miner. Res.2007;22:V28–V33.
10.Chalcraft JR, Cardinal LM, Wechsler PJ, etal. Vitamin D synthesis following a single bout of sun exposure in older and younger men and women.Nutrients.2020;12:2237.
11.Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications.Endocr. Rev.2001;22:477–501.
12.de Jongh RT, van Schoor NM, Lips P. Changes in vitamin D endocrinology during aging in adults.Mol. Cell. Endocrinol.2017;453:144–150.
13.Chel VG, Ooms ME, Popp-Snijders C, etal, Meulemans CC, Lips P. Ultraviolet irradiation corrects vitamin D deficiency and suppresses secondary hyperparathyroidism in the elderly.J. Bone Miner. Res.1998;13:1238–1242.
14.Chel VG, Ooms ME, Pavel S, etal. Prevention and treatment of vitamin D deficiency in Dutch psychogeriatric nursing home residents by weekly half-body UVB exposure after showering: a pilot study.Age Ageing.2011;40:211–124.
15.Mousavi SE, Amini H, Heydarpour P, etal. Air pollution, environmental chemicals, and smoking may trigger vitamin D deficiency: Evidence and potential mechanisms.Environ. Int.2019;122:67–90.
16.Passeron T, Bouillon R, Callender V, etal. Sunscreen photoprotection and vitamin D status.Br. J. Dermatol.2019;181:916–931.
17.Cutillas-Marco E, Fuertes-Prosper A, Grant WB, etal. Vitamin D deficiency in South Europe: effect of smoking and aging.Photodermatol. Photoimmunol. Photomed.2012;28:159–161.
18.Snijder MB, van Dam RM, Visser M, etal.P. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women.J. Clin. Endocrinol. Metab.2005;90:4119–4123.
19.NCD Risk Factor Collaboration (NCD-RisC) Rising rural body-mass index is the main driver of the global obesity epidemic in adults.Nature.2019;569:260–264.
20.Reinders I, van Schoor NM, Deeg DJH, etal. Trends in lifestyle among three cohorts of adults aged 55-64 years in 1992/1993, 2002/2003 and 2012/2013.Eur. J. Public Health.2018;28:564–570.
21.van Dam RM, Snijder MB, Dekker JM, etal. Potentially modifiable determinants of vitamin D status in an older population in the Netherlands: the Hoorn Study.Am. J. Clin. Nutr.2007;85:755–761.
22.van den Heuvel EG, van Schoor N, de Jongh RT, etal. Cross-sectional study on different characteristics of physical activity as determinants of vitamin D status; inadequate in half of the population.Eur. J. Clin. Nutr.2013;67:360–365.
23.Vallejo MS, Blümel JE, Arteaga E, etal. Gender differences in the prevalence of vitamin D deficiency in a southern Latin American country: a pilot study.Climacteric.2020;23:410–416.
24.Sanghera DK, Sapkota BR, Aston CE, etal. Vitamin D status, gender differences, and cardiometabolic health disparities.Ann. Nutr. Metab.2017;70:79–87.
25.Z. Wu, C.A. Camargo Jr., I.R. Reid, etal, What factors modify the effect of monthly bolus dose vitamin D supplementation on 25-hydroxyvitamin D concentrations. ? J. Steroid. Biochem. Mol. Biol.201, 105687 (2020).
26.Chapuy MC, Arlot ME, Duboeuf F, etal. Vitamin D3 and calcium to prevent hip fractures in elderly women.N. Engl. J. Med.1992;327:1637–1642.
27.Lips P, Chapuy MC, Dawson-Hughes B, etal. An international comparison of serum 25-hydroxyvitamin D measurements.Osteoporos. Int.1999;9:394–397.
28.Lips P, Duong T, Oleksik A, etal. A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial.J. Clin. Endocrinol. Metab.2001;86:1212–1221.
29.Sohl E, de Jongh RT, Heymans MW, etal. Thresholds for serum 25(OH)D concentrations with respect to different outcomes.J. Clin. Endocrinol. Metab.2015;100:2480–2488.
30.Kuchuk NO, van Schoor NM, Pluijm SM, etal. Vitamin D status, parathyroid function, bone turnover, and BMD in postmenopausal women with osteoporosis: global perspective.J. Bone Miner. Res.2009;24:693–701.
31.Reid IR, Horne AM, Mihov B, etal. Effect of monthly high-dose vitamin D on bone density in community-dwelling older adults substudy of a randomized controlled trial.J. Intern. Med.2017;282:452–460.
32.Khaw KT, Stewart AW, Waayer D,etal. Effect of monthly high-dose vitamin D supplementation on falls and non-vertebral fractures: secondary and post-hoc outcomes from the randomised, double-blind, placebo-controlled ViDA trial.Lancet Diabetes Endocrinol.2017;5:438–447.
33.Macdonald HM, Reid IR, Gamble GD, etal. 25-Hydroxyvitamin D threshold for the effects of vitamin D supplements on bone density: secondary analysis of a randomized controlled trial.J. Bone Miner. Res.2018;33:1464–1469.
34.de Fran?a NA, Camargo MB, Lazaretti-Castro M, etal. Dietary patterns and bone mineral density in Brazilian postmenopausal women with osteoporosis: a cross-sectional study.Eur. J. Clin. Nutr.2016;70:85–90.
35.Lips P, van Ginkel FC, Jongen MJ, etal, van der Vijgh WJ, Netelenbos JC. Determinants of vitamin D status in patients with hip fracture and in elderly control subjects.Am. J. Clin. Nutr.1987;46:1005–1010.
36.Buttriss JL, Lanham-New SA, Steenson S, etal, Delamare G, Hoyland AE, Larsen L, Street LN, Mathers JC, Prentice A. Implementation strategies for improving vitamin D status and increasing vitamin D intake in the UK: current controversies and future perspectives: proceedings of the 2nd Rank Prize Funds Forum on vitamin D.Br. J. Nutr.2022;127:1567–1587.
37.Balk EM, Adam GP, Langberg VN, etal. International Osteoporosis Foundation Calcium Steering Committee.: Global dietary calcium intake among adults: a systematic review.Osteoporos. Int.2017;28:3315–3324.
38.Weaver CM, Alexander DD, Boushey CJ, etal. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation.Osteoporos. Int.2016;27:367–376.
39.Avenell A, Mcak JC, O’Connell D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men.Cochrane Database Syst. Rev.2014;4:CD000227.
40.Yao P, Bennett D, Mafham M, etal. Vitamin D and calcium for the prevention of fracture: a systematic review and meta-analysis.JAMA Netw. Open.2019;2:e1917789.
41.Waterhouse M, Sanguineti E, Baxter C, etal. Vitamin D supplementation and risk of falling: outcomes from the randomized, placebo-controlled D-Health trial.J. Cachexia Sarcopenia Muscle.2021;12:1428–1439.
42.Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, etal. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial.JAMA Intern. Med.2016;176:175–183.
43.Bislev LS, Grove-Laugesen D, Rejnmark L. Vitamin D and muscle health: a systematic review and meta-analysis of randomized placebo-controlled trials.J. Bone Miner. Res.2021;36:1651–1660.
44.Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, etal. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials.BMJ.2009;339:b3692.
45.Sanders KM, Stuart AL, Williamson EJ, etal. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial.JAMA.2010;303:1815–1822.
46.Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: a randomized clinical trial.J. Steroid Biochem. Mol. Biol.2017;173:317–322.
47.Endo I, Inoue D, Mitsui T, etal. Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors.Endocrinology.2003;144:5138–5144.
48.Beaudart C, Buckinx F, Rabenda V, etal. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials.J. Clin. Endocrinol. Metab.2014;99:4336–4345.
49.Garber AJ. Effects of parathyroid hormone on skeletal muscle protein and amino acid metabolism in the rat.J. Clin. Invest.1983;71:1806–1821.
50.Patten BM, Bilezikian JP, Mallette LE, etal. Neuromuscular disease in primary hyperparathyroidism.Ann. Intern. Med.1974;80:182–193.
51.Joborn C, Joborn H, Rastad J, etal. Maximal isokinetic muscle strength in patients with primary hyperparathyroidism before and after parathyroid surgery.Br. J. Surg.1988;75:77–80.
52.Bislev LS, Langagergaard R?dbro L, Sikj?r T, etal. Effects of elevated parathyroid hormone levels on muscle health, postural stability and quality of life in vitamin D-insufficient healthy women: a cross-sectional study.Calcif. Tissue Int.2019;105:642–650.
53.Stein MS, Wark JD, Scherer SC, etal. Falls relate to vitamin D and parathyroid hormone in an Australian nursing home and hostel.JAGS.1999;47:1195–1201.
54.Sambrook PN, Chen JS, March LM, etal. Serum parathyroid hormone is associated with increased mortality independent of 25-hydroxy vitamin d status, bone mass, and renal function in the frail and very old: a cohort study.J. Clin. Endocrinol. Metab.2004;89:5477–5481.
55.Pilz S, Kienreich K, Tomaschitz A, etal. Vitamin D and cardiovascular disease: update and outlook.Scand. J. Clin. Lab. Invest.2012;Suppl.:83–91.
56.Scragg R. The Vitamin D assessment (ViDA) study – design and main findings.J. Steroid Biochem. Mol. Biol.2020;198:105562.
57.Manson JE, Bassuk SS, Cook NR, etal. VITAL Research Group Vitamin D, Marine n-3 fatty acids, and primary prevention of cardiovascular disease current evidence.Circ. Res.2020;126:112–128. 58.Sluyter JD, Camargo CA, Jr., Stewart AW, etal. Effect of monthly, high-dose, long-term vitamin D supplementation on central blood pressure parameters: A randomized controlled trial substudy.J. Am. Heart Assoc.2017;6:e006802.
59.Manousaki D, Mokry LE, Ross S, etal. Mendelian randomization studies do not support a role for vitamin D in coronary artery disease.Circ. Cardiovasc. Genet.2016;9:349–356.
60.Br?ndum-Jacobsen P, Benn M, Afzal S, etal. No evidence that genetically reduced 25-hydroxyvitamin D is associated with increased risk of ischaemic heart disease or myocardial infarction: a Mendelian randomization study.Int. J. Epidemiol.2015;44:651–661.
61.Vimaleswaran KS, Cavadino A, Berry DJ, etal. Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study.Lancet Diabetes Endocrinol.2014;2:719–729.
62.Skaaby T, Husemoen LL, Martinussen T,etal. Vitamin D status, filaggrin genotype, and cardiovascular risk factors: a Mendelian randomization approach.PLoS One.2013;8:e57647.
63.Emerging Risk Factors Collaboration/EPIC-CVD/Vitamin D Studies Collaboration. Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: observational and Mendelian randomisation analyses.Lancet Diabetes Endocrinol.2021;9:837–846.
64.Neale RE, Baxter C, Romero BD, etal. The D-Health Trial: a randomised controlled trial of the effect of vitamin D on mortality.Lancet Diabetes Endocrinol.2022;10:120–128.
65.Pittas AG, Dawson-Hughes B, Sheehan P, etal. D2d Research Group.: Vitamin D supplementation and prevention of type 2 diabetes.N. Engl. J. Med.2019;381:520–530.
66.Dawson-Hughes B, Staten MA, Knowler WC, etal, D2d Research Group. Intratrial exposure to vitamin D and new-onset diabetes among adults with prediabetes: a secondary analysis from the vitamin D and type 2 diabetes (D2d) study.Diabetes Care.2020;43:2916–2922.
67.Jorde R, Sollid ST, Svartberg J, etal. Vitamin D 20,000 IU per week for five years does not prevent progression from prediabetes to diabetes.J. Clin. Endocrinol. Metab.2016;101:1647–1655.
68.Kawahara T, Suzuki G, Inazu T, etal. Rationale and design of Diabetes prevention with active Vitamin D (DPVD): a randomised, double-blind, placebo-controlled study.BMJ Open.2016;6:e011183.
69.Kawahara. T.: Eldecalcitol, a vitamin D analogue, for diabetes prevention in impaired glucose tolerance (DPVD study). Diabetes Care.67(2018).
70.A.G. Pittas, R. Jorde, T. Kawahara, B. Dawson-Hughes. Vitamin D supplementation for prevention of type 2 diabetes mellitus: To d or not to D. ? J. Clin. Endocrinol. Metab.105, 3721–3733 (2020).
71.Barbarawi M, Zayed Y, Barbarawi O, etal. Effect of vitamin D supplementation on the incidence of diabetes mellitus.J. Clin. Endocrinol. Metab.2020;105:dgaa335.
72.Zhang Y, Tan H, Tang J, etal. Effects of vitamin D supplementation on prevention of type 2 diabetes in patients with prediabetes: A systematic review and meta-analysis.Diabetes Care.2020;43:1650–1658.
73.Matsuo LH, Confortin SC, Ceolin G, etal. Association between lower serum vitamin D (25-hydroxy-cholecalciferol) concentrations and cognitive impairment in older adults: data from a populational-based cohort study in a middle-income country.Public Health Nutr.2022;25:2507–2516.
74.Arosio B, Rossi PD, Ferri E, etal. Characterization of Vitamin D status in older persons with cognitive impairment.Nutrients.2022;14:1142.
75.Bivona G, Lo Sasso B, Gambino CM, etal. The role of vitamin D as a biomarker in alzheimer’s disease.Brain Sci.2021;11:334.
76.Perez L, Heim L, Sherzai A, Jaceldo-Siegl K. Nutrition and vascular dementia.J. Nutr. Health Aging.2012;16:319–324.
77.Hu J, Jia J, Zhang Y, etal. Effects of vitamin D3 supplementation on cognition and blood lipids: a 12-month randomised, double-blind, placebo-controlled trial.J. Neurol. Neurosurg. Psychiatry.2018;89:1341–1347.
78.Jia J, Hu J, Huo X, etal. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial.J. Neurol. Neurosurg. Psychiatry.2019;90:1347–1352.
79.Castle M, Fiedler N, Pop LC, etal. Three doses of vitamin d and cognitive outcomes in older women: a double-blind randomized controlled trial.J. Gerontol. A. Biol. Sci. Med. Sci.2020;75:835–842.
80.Yang T, Wang H, Xiong Y, etal. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: a 12-month randomized controlled trial.J. Alzheimers Dis.2020;78:1509–1518.
81.Bouillon R, Manousaki D, Rosen C, etal. The health effects of vitamin D supplementation: evidence from human studies.Nat. Rev. Endocrinol.2022;18:96–110.
82.Barysch MJ, Hofbauer GF, Dummer R. Vitamin D, ultraviolet exposure, and skin cancer in the elderly.Gerontology.2010;56:410–413.
83.Maeda SS, Kunii IS, Hayashi LF, etal. Increases in summer serum 25-hydroxyvitamin D (25OHD) concentrations in elderly subjects in S?o Paulo, Brazil vary with age, gender and ethnicity.BMC Endocr. Disord.2010;10:12.
84.Samefors M, Tengblad A, ?stgren CJ. Sunlight exposure and vitamin D levels in older people- an intervention study in Swedish nursing homes.J. Nutr. Health Aging.2020;24:1047–1052.
85.Sambrook PN, Cameron ID, Chen JS, etal. Does increased sunlight exposure work as a strategy to improve vitamin D status in the elderly: a cluster randomised controlled trial.Osteoporos. Int.2012;23:615–624.
86.Pinheiro MM, Schuch NJ, Genaro PS, etal. Nutrient intakes related to osteoporotic fractures in men and women–the Brazilian Osteoporosis Study (BRAZOS)Nutr. J.2009;8:6.
87.Buttriss JL, Lanham-New SA. Is a vitamin D fortification strategy needed?Nutr. Bull.2020;45:115–122.
88.Lips P, Cashman KD, Lamberg-Allardt C, etal. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society.Eur. J. Endocrinol.2019;180:P23–P54.
89.Cashman KD. Vitamin D Deficiency: defining, prevalence, causes, and strategies of addressing.Calcif. Tissue Int.2020;106:14–29.
90.J??skel?inen T, Itkonen ST, Lundqvist A, etal. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data.Am. J. Clin. Nutr.2017;105:1512–1520.
91.Pilz S, Zittermann A, Trummer C, etal. Vitamin D testing and treatment: a narrative review of current evidence.Endocr. Connect.2019;8:R27–R43.
92.Cashman KD, Ritz C, Kiely M, Odin Collaborators. Improved dietary guidelines for vitamin D: Application of individual participant data (IPD)-level meta-regression analyses.Nutrients.2017;9:469.
93.https://www.fda.gov/media/151707/downloadAccessed 16 Sept 2021
94.Bilezikian JP, Bikle D, Hewison M,etal. Mechanisms in endocrinology: Vitamin D and COVID-19.Eur. J. Endocrinol.2020;183:R133–R147.
95.di Filippo L, Allora A, Doga M, etal. Vitamin D levels are associated with blood glucose and BMI in COVID-19 patients, predicting disease severity.J. Clin. Endocrinol. Metab.2022;107:e348–e360.
96.Chambers ES, Vukmanovic-Stejic M, Turner CT, etal. Vitamin D3 replacement enhances antigen-specific immunity in older adults.Immunother. Adv.2021;1:ltaa008.
97.Bouillon R, Quesada-Gomez JM. Vitamin D endocrine system and COVID-19.JBMR.2021;5:e10576.
98.Ulivieri FM, Banfi G, Camozzi V, etal. Vitamin D in the Covid-19 era: a review with recommendations from a G.I.O.S.E.G. expert panel.Endocrine.2021;72:597–603.

相關(guān)產(chǎn)品

相關(guān)產(chǎn)品

相關(guān)閱讀

相關(guān)閱讀

免费一级A片毛毛片有声小说 | 白丝美女自慰在线观看 | 国产色欲婬乱免费视频高潮 | 亚洲AV免费在线观看 | 波多野结衣国产区42部 | 亚洲精品无码含羞草蜜桃 | 亚洲AV无码乱码精品国产玉蒲团 | 少妇激情偷人爽爽91嫩草 | ▓成人蕾丝视频▓无码免费 | 亚洲AV无码专区一级婬片毛片 | 人妻丰满熟妇Ⅴ无码区A片水多多 | 国产成人精品无码 | 国产精品秘 久久久久久 | 99精品国产一区二区三区四区阿崩 | 三人成全免费观看电视剧 | 小辣椒成人福利A∨导航 | 亚洲日韩AV无码精品 | 亚洲欧美动漫偷拍 | 成人无码一区二区三区 | 午夜精品久久久久久久99密爱 | 午夜成人无码国产精品电影王小波 | 91内射极品美女在线观看 | 国产一级婬片A片久久久花开诺 | 99成人 国产精品视频 | 97超碰国产精品无码蜜芽 | 久久久国产精品黄毛片 | 无码人妻精品一区二区三区老鸭窝 | aaaaaaaa在线观看| 黄色视频在线观看地址 | 91午夜夜伦鲁鲁片无码 | 国产农村村妇AAA片 国产无码电影在线观看 | 亚洲 丝袜 麻豆 国产 | 久久人妻少妇嫩草AV无码苍井空 | 欧美成人网站免费体验 | 亚洲日韩大佬色蜜桃91 | 亚洲欧美日韩丝袜自慰 | 亚洲无码免费在线观看 | 欧美性受XXXX黑人XX | 成人av一区二区三区 | 在线观看中文字幕av | 日本又黄又猛又爽免费视频 |